Chapter 1

| ntroduction to Software
Engineering

INTRODUCTION TO
SOFTWARE ENGINEERING

CHAPTER ONE

WHAT IS SOFTWARE ENGINEERING

The term software engineering is composed of two words, software and
engineering.

Software is more than just a program code.

A program is an executable code, which serves some computational purpose.

Software is considered to be a collection of executable programming code,
associated libraries and documentations.

Engineering on the other hand, is all about devel oping products, using well-
defined, scientific principles and methods.

software engineering is an engineering branch associated with the
development of software product using well-defined scientific principles,
methods and procedures.

The outcome of software engineering is an efficient and reliable software
product.

Without using software engineering principlesit would be difficult to develop
large programs

Software engineering principles use two important techniques to reduce problem
comnlexitv: ahstraction and decomnosition.

2
=]
2
M
e
M
W,
w0
—

NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change in user
requirements and environment on which the software is working.

« Largesoftware- Itiseaser to build awall than to a house or building, likewise, as the
size of software become large engineering has to step to give it a scientific process.

Scalability- If the software process were not based on scientific and engineering
concepts, it would be easier to re-create new software than to scale an existing one.

 Cost- As hardware industry has shown its skills and huge manufacturing has lower
down the price of computer and electronic hardware. But the cost of software remains
high if proper processis not adapted.

 Dynamic Nature- The always growing and adapting nature of software hugely depends
upon the environment in which the user works. If the nature of software is always
changing, new enhancements need to be done in the existing one. Thisiswhere software
engineering playsagood role.

* Quality Management- Better process of software development provides better and
quality software product.

Characteristics of Good Software

Operational :-This « Budget * Functionality
tells us how well e Usability « Dependability
softwqreworksin . Efficiency e Security
operations. It can be

measured on: o Correctness o Safety

Transitional: This aspect isimportant when the software is moved from one platform to
another:

» Portability
* Reusability

M aintenance how well software has the capabilities to maintain itself in the ever
changing environment:

 Modularity
* Maintainability
o Hexibility
o Scalahility

Professional and ethical responsibility

o Software engineering involves wider
responsibilitiesthan smply the application of
technical skills

o Software engineersmust behavein an honest and
ethically responsible way if they areto be
respected as professionals

Issues of professional responsibility

o Confidentiality

— Engineers should normally respect the confidentiality
of their employersor clients.

 Competence

— Engineers should not misrepresent ther level of
competence. They should not accept work beyond
their competence.

 |ntellectual property rights

— Engineers should be aware of local laws governing
the use of intellectual property such as patents,
copyright, etc. They should be careful to ensure that

the intellectual property of employers and clients is
protected.

o Computer misuse

— Software engineers should not use their technical
skillsto misuse other people’s computers.

« Computer misuse ranges from relatively trivial (game

playing on an employer’s machine) to extremely serious
(dissemination of viruses).

Software engineering ethics

Some of these are:
1. Confidentiality You should normally respect the confidentiality of your
employersor clientsirrespective of whether or not aformal confidentiality
agreement
has been signed.
2. Competence You should not misrepresent your level of competence.

* You should not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright.

* You should be careful to ensure that the intellectual property of employers and
clientsis protected.
4. Computer misuse You should not use your technical skillsto misuse other
people’s computers.

» Computer misuse ranges from relatively trivial (game playing on an
employer’s machine, say) to extremely serious (dissemination of viruses or
other malware).

SOFTWARE ENGINEERING - A LAYERED
TECHNOLOGY:

The following are the set of Umbrella
Activities.

Softwar e project tracking and control — allows the software team
to assess progress against
the project plan and take necessary action to maintain schedule.

Risk Management - assessesrisksthat may effect the outcome of
the project or the quality of

the product.

Softwar e Quality Assurance - defines and conducts the activities
required to ensure

software quality.

Formal Technical Reviews - assesses softwar e engineering wor k
productsin an effort to

uncover and remove errors before they are propagated to the next
action or activity.

Measurement - define and collects process, project and
product measuresthat assist theteam in

delivering software that needs customer‘s needs, can be
used in conjunction with all other framework and umbrella
activities.

Softwar e configuration management - manages the
effects of change throughout the software process.

Reusability management - defines criteria for work
product reuse and establishes mechanisms to achieve
reusable components.

Work Product preparation and production -
encompasses the activities required to create work
products such as models, document, logs, forms and lists.

Chapter 2

Softwar e Processes

You ve got tq be very careful if you don’t know where you’re goin
because you rr%gt?\t not%]et there.” 4 4 g9omng,

Yogi Berra

Learning outcomes:

What is software process?

Understand that organizations and their members are
systems and that analysts need to take a systems
perspective.

Depict systems graphically using context-level data
flow diagrams, entity-relationship models, and use
cases and use case scenarios.

Comprehend that organizational culture impacts the
design of information systems

Software processes

* There are many different software processes but all
must include four activities that are fundamental to
software engineering:

1. Softwar e specification The functionality of the
software and constraints on its operation must be
defined.

2. Software design and implementation The software to
meet the specification must be produced.

3. Software validation The software must be validated
to ensure that it does what the customer wants.

4. software evolution The software must evolve to meet
changing customer needs

Software processes

o A structured set of activitiesrequired to
develop a software system

A software process model is an abstract
representation of a process.

e |t presents adescription of aprocess from
some particular perspective

Software process descriptions

When we describe and discuss processes, we usually talk about
the activities in these processes such as specifying a data model,
designing a user interface, etc. and the ordering of these activities

Process descriptions may also include:

* Products, which are the outcomes of a process activity;

* Roles, which reflect the responsibilities of the people
Involved in the process,

 Pre- and post-conditions, which are statements that are
true before and after a process activity has been enacted
or a product produced.

Software processes types

Software processes may be categorized as either plan-
driven or agile processes

Plan-driven processes are processes where all of the
process activities are planned in advance and progressis
measured against this plan

agile processes, planning isincremental and it is easier to
change the process to reflect changing customer
requirements.

In practice, most practical processes include elements of
both plan-driven and agile approaches

There are no right or wrong software processes

SDLC Model

A framework that describes the activities
performed at each stage of a software
development project.

-yatem Study
| L
Maintenance Feastpility Study
F ¥
. ¥ .
Impilhementatmn oftware oystetn Analysis
Dewelopinent
Life Cycle
. h .
Testing oystemn Design

Coding®

Systems Development Methodologies

 Inthe continuing effort to improve the systems analysis and
design process, severa different methodol ogies have been
developed. Some of the popular and widely used
methodologies are;

. Waterfal Model

Il. Prototyping Model

. Iterative Enhancement Model
Iv. Spiral Model

v. Rapid Application Model

vi. Big Bang Model

Waterfall Model

e Requirements— defines
needed information,
function, behavior,
performance and interfaces.

* Design — data structures,
software architecture,
Interface representations,

i algorithmic details.

e |mplementation — source
code, database, user
documentation, testing.

Requirements

Implementation

Installation

Waterfall Strengths

Easy to understand, easy to use

Provides structure to inexperienced staff
Milestones are well understood

Sets requirements stability

Good for management control (plan, staff, track)

Works well when quality is more important than cost
or schedule

Waterfall Deficiencies

All requirements must be known upfront
Can give afalse impression of progress

Does not reflect problem-solving nature of software
development — iterations of phases

Integration is one big bang at the end

Little opportunity for customer to preview the system
(until it may betoo late)

When to use the Waterfall Model

* Requirements are very well known

e Technology Is understood

 New version of an existing product

 Porting an existing product to a new platform.

V-Shaped Model

e A variant of the

. Waterfall that
Requirement T —— > Acceptance)
Gathering Testing emphaSI zes the
verification and
System i > System al d . f h
S product.
L Do 7 hamg ¢+ Testing of the product
% | ; Is planned in paralléel
% Modul Uni S8 ' '
% e f B with a corresponding
% ' Y phase of development
9 .

Coding

V-Shaped Steps

Project and Requirements Planning —
allocate resources

Product Requirements and
Specification Analysis— complete
specification of the software system

Architecture or High-Level Design —
defines how software functions fulfill
the design

Detailed Design — develop algorithms
for each architectural component

Production, operation and
mai ntenance — provide for
enhancement and corrections

System and acceptance testing —
check the entire software system in its
environment

Integration and Testing — check that
modules interconnect correctly

Unit testing — check that each module
acts as expected

Coding - transform algorithms into
software

V-Shaped Strengths

Emphasize planning for verification and
validation of the product in early stages of
product development

Each deliverable must be testable

Project management can track progress by
milestones

Easy to use

V-Shaped Weaknesses

* Doesnot easlly handle dynamic changesin
regquirements

e Doesnot contain risk analysis activities

When to use the V-Shaped Model

» Excellent choice for systems requiring high
reliability — hospital patient control
applications

 All requirements are known up-front

* \When it can be modified to handle changing
reguirements beyond analysis phase

« Solution and technology are known

Prototyping Model

* Developers build a prototype
A o £ during the requirements phase
e Prototypeisevaluated by end

o Usersgive corrective feedback

o Developersfurther refine the
prototype

e When the user is satisfied, the
prototype code is brought up to

: the standards needed for afinal
product.

Structured Evolutionary Prototyping Steps

o A preliminary project plan is developed
o Partia high-level paper model Is created

 The model issourcefor apartial requirements
specification

e A prototypeisbuilt with basic and critical attributes

* Thedesigner builds

— the database
— user interface
— agorithmic functions

* Thedesigner demonstrates the prototype, the user
evaluates for problems and suggests improvements.

o Thisloop continues until the user is satisfied

Structured Evolutionary Prototyping Strengths

Customers can “see” the system requirements as they
are being gathered

Developers learn from customers

A more accurate end product

Unexpected requirements accommodated
Allows for flexible design and development
Steady, visible signs of progress produced

| nteraction with the prototype stimulates awareness of
additional needed functionality

S.E Prototyping Weaknesses

Tendency to abandon structured program
development for code-and-fix” development

Bad reputation for “quick-and-dirty” methods
Overall maintainability may be overlooked

The customer may want the prototype delivered.
Process may continue forever (scope creep)

When to use Structured Evolutionary Prototyping

* Requirements are unstable or have to be clarified

* Asthereguirements clarification stage of a waterfall
model

e Develop user interfaces
 Short-lived demonstrations
* New, original development

* With the analysis and design portions of object-
oriented devel opment.

Rapid Application Model (RAD)

Requirements planning phase (aworkshop utilizing
structured discussion of business problems)

User description phase — automated tools capture
Information from users

Construction phase — productivity tools, such as code
generators, screen generators, etc. inside a time-box.
(Do until done”)

Cutover phase -- installation of the system, user
acceptance testing and user training

RAD Strengths

* Reduced cycle time and improved productivity with
fewer people means lower costs

* Time-box approach mitigates cost and schedule risk

» Customer involved throughout the complete cycle
minimizes risk of not achieving customer satisfaction

and business needs

RAD Weaknesses

Accelerated development process must give quick
responses to the user

Hard to use with legacy systems
Requires a system that can be modularized

Developers and customers must be committed to
rapid-fire activities in an abbreviated time frame.

When to use RAD

Reasonably well-known requirements
User involved throughout the life cycle
Project can be time-boxed
Functionality delivered in increments
High performance not required

L ow technical risks

System can be modularized

Spiral Model

This model considersrisk, which often goes
un-noticed by most other models.

The model starts with determining objectives
and constraints of the software at the start of
one iteration.

Next phase is of prototyping the software. This
Includesrisk analysis.

In the fourth phase of the plan of next iteration
IS prepared.

Prototyping Model

e Thismodel considersrisk,

" which often goes un-noticed by
noXx most other models.
Objective t.:.‘: Aemate: o The mOdeI Star tS WI th

Evaluation

Identification

determining objectives and
constraints of the software at the
start of one iteration.

_Review
Ty,

* Next phaseisof prototyping the
software. Thisincludesrisk
analysis.

 Inthefourth phase of the plan
seeomet Of NEXT iteration is prepared. .

Mext Phase
Planning

Advantages

|t providesthe potential for rapid development of
Increasingly more complete versions of the
software.

 The spiral model Isarealistic approach to the
development of |arge-scale systems and software.

 The spiral model uses prototyping asarisk
reduction mechanism but, more importantly
enables the devel oper to apply the prototyping
approach at any stage in the evolution of the
product.

Draw Backs

The spiral model Is not a panacea.

It may be difficult to convince customers that
the evolutionary approach is controllable.

|t demands considerable risk assessment
expertise and relies on this expertise for
SUCCESS.

If amaor risk is not uncovered and managed,
problems will undoubtedly occur.

Big Bang Model

Thismodel isthe smplest model initsform. It
requires little planning, lots of

programming and lots of funds. Thismodel Is
conceptualized around the big bang

of universe. As scientists say that after big bang
lots of galaxies, planets, and

stars evolved just as an event. Likewise, if we put
together lots of programming

and funds, you may achieve the best software
product.

Time

Software

Efforts

Resources

Iterative Model

* Theiterative enhancement life cycle model
counters the limitations of the waterfall model
and tries to combine the benefits of both
prototyping and the waterfall model

Advantages of Iterative Model

I. 1. Thisapproach can result in better testing

I1. 11. The increments provides feedback to the
client which is useful for determining the
final

Fundamental of Software
Engineering

Chapter 3. Requirement
Engineering

Topics covered

Feasibility studies

Reguirements elicitation and analysis
Requirements validation
Reguirements management

Objectives

To describe the principal requirements
engineering activities

To introduce techniques for requirements
elicitation and analysis

To describe requirements validation

To discuss the role of requirements

management in support of other requirements
engineering processes

Requirements engineering (RE)

e The processto gather the software
reguirements from client, analyze, and
document them is known as requirement
engineering. The goal of requirement
engineering is to develop and maintain
sophisticated and descriptive ‘System
Requirements Specification’ document.

Requirements engineering
processes

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organization developing the reguirements

« However, there are anumber of generic activities
common to all processes

Feasibility Study

Requirements elicitation/ Requirement Gathering
Requirements Specification / Requirement analysis
Requirements validation

Requirements management

* Inpractice, RE isan iterative activity in which these
processes are interleaved

SAEE I SRS o

The requirements engineering process

Requirements
elicitation and
analysis

Feasibility
study

Feasibility
report

Requirements Y,
specification £

System
models

Requirements
validation

User and system
requirements

Y

Requirements
document

Feasibility studies

« A feasibility study decides whether or not the
proposed system is worthwhile.

A short focused study that checks
— If the system contributes to organisational
objectives,
— If the system can be engineered using current
technology and within budget;

— If the system can be integrated with other systems
that are used.

Feasibility study implementation

e Based on information assessment (what is required),
Information collection and report writing.

* Questions for people in the organisation
— What if the system wasn’t implemented?
— What are current process problems?
— How will the proposed system help?
— What will be the integration problems?
— Is new technology needed? What skills?
— What facilities must be supported by the proposed system?

Elicitation and analysis

e Sometimes called requirements elicitation or requirements
discovery.

* Involvestechnical staff working with customersto find out
about the application domain, the services that the system
should provide and the system’s operational constraints.

 May involve end-users, managers, engineersinvolved in
maintenance, domain experts, trade unions, etc. These are
called stakeholders.

Problems of requirements analysis

Stakeholders don’t know what they really want.
Stakeholders express reguirements in their own terms.
Different stakeholders may have conflicting requirements.

Organisational and political factors may influence the system
requirements.

The requirements change during the analysis process. New
stakeholders may emerge and the business environment
change.

The requirements analysis process

/Ericquin:mcnts
definition and

specification

. B Y
(Requirements
validation

.

Domain
understanding

Requirements
collection
’l Classification ’

Prioritization
Process
entry

(" Conflict
resolution

Requirement Gathering

o If thefeasibility report Is positive towards
undertaking the project, next phase starts with
gathering requirements from the user.

* Analysts and engineers communicate with the
client and end-usersto know their ideas on
what the software should provide and which
features they want the software to include.

Software Requirement Specification (SRS)

SRS isadocument created by system analyst after the
requirements are collected from various stakeholders.

SRS defines how the intended software will interact with
hardware, external

Interfaces, speed of operation, response time of system,
portability of software across various platforms,
maintainability, speed of recovery after crashing, Security,
Quality, Limitations etc.

The reguirements received from client are written in natural
language.

It iIsthe responsibility of the system analyst to document

the requirements in technical language so that they can be
comprehended and used by the software devel opment team.

SRS should come up with the following features:

User Requirements are expressed in natural
language.
Technical requirements are expressed in

structured language, which is used inside the
organi zation.

Design description snhould be written in Pseudo
code.

Format of Forms and GUI screen prints.

Conditiona and mathematical notations for DFDs
etC.

Software Requirement Validation

After reguirement specifications are developed, the reguirements
mentioned in this document are validated. User might ask for illegal,
Impractical solution or

experts may interpret the requirements inaccurately.

Thisresultsin hugeincrease in cost if not nipped in the bud.
Requirements can be checked against following conditions

If they can be practically implemented

If they are valid and as per functionality and domain of software
If there are any ambiguities

If they are complete

If they can be demonstrated

Requirement Elicitation Process

* Requirement elicitation process can be
depicted using the following diagram:

Requirement WM Requirement WA Negotiation & WM Requirement

Gathering Mg Organisation g Discussion [l Specification

Reguirementsdiscovery: - The developers discuss with the client and end
users and know their expectations from the software. Domain requirements
are also discovered at this stage

Reguirements classification and or ganisation:-Groups related requirements
and organizes them into coherent clusters

The developers prioritize and arrange the requirements in order of
Importance, urgency and convenience.

Prioritizing requirements and resolving requirements conflicts

Negotiation & discussion - If requirements are ambiguous or there are some
conflictsin requirements of various stakeholders, it is then negotiated and
discussed with the stakeholders. Requirements may then be prioritized and
Unrealistic requirements are compromised reasonably.

The requirements come from various stakeholders. To remove the ambiguity
and conflicts, they are discussed for clarity and correctness.

Reguirements specification:-Documentation - All formal and informal,
functional and non-functional requirements are documented and made
available for next phase processing.

Problems of requirements elicitation

Stakeholders don’t know what they really want.

Stakeholders express requirements in their own
terms.

Different stakeholders may have conflicting
requirements. Organizational and political factors
may Influence the system requirements.

The requirements change during the analysis
PrOCess.

New stakeholders may emerge and the business
environment change

Reqguirements validation techniques

* Reguirementsreviews;- Systematic manual
analysis of the requirements

e Prototyping:- Using an executable model of
the system to check requirements

e Test-case generation:- Developing tests for
requirements to check testability

Requirement Elicitation Technigues

There are various ways to discover requirements. Some of
them are explained below:

v Interviews

v’ Surveys

v Questionnaires
v’ Task analysis

v Domain Analysis
v" Prototyping

v’ Brainstorming
v Observation

Interviews

Interviews are strong medium to collect requirements. Organization may conduct
several types of interviews such as:

= Structured (closed) interviews, where every single information to gather is
decided in advance, they follow pattern and matter of discussion firmly.

= Non-structured (open) interviews, where information to gather is not decided in advance,
more flexible and |ess biased.

= Ord interviews
= Written interviews
= One-to-one interviews which are held between two persons across the table.
= Group interviews which are held between groups of participants. They help
to uncover any missing requirement as numerous people are involved.
Surveys
Organization may conduct surveys among various stakeholders by querying about
their expectation and requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and
respective options is handed over to all stakeholders to answer,
which are collected and compiled.

A shortcoming of thistechniqueis, if an option for some issue is not
mentioned in the questionnaire, the issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for
which the new system is required.

If the client already has some software to perform certain operation,
It is studied and requirements of proposed system are collected.

Domain Analysis

Every software falls into some domain category. The expert peoplein
the domain

can be agreat help to analyze general and specific requirements.
Brainstor ming

An informal debate is held among various stakeholders and all their
Inputs are recorded for further requirements analysis.

Prototyping
Prototyping is building user interface without adding detail functionality for user
to interpret the features of intended software product. It helps giving better idea
of requirements. If there is no software installed at client’s end for developer’s
reference and the client is not aware of its own requirements, the developer
creates a prototype based on initially mentioned requirements. The prototypeis
shown to the client and the feedback is noted. The client feedback serves as an
input for requirement gathering.

Observation
Team of experts visit the client’s organization or workplace. They observe the
actual working of the existing installed systems. They observe the workflow at the
client’s end and how execution problems are dealt. The team itself draws some
conclusions which aid to form requirements expected from the software.

What is Requirement

e A requirement issimply a statement of what the system must
do or what characteristics it needs to have. During a systems
development project.

> Why: Enterprise requirements

 Context analysis: the reason why the system to be created.
Constraints on the environment in which the system isto
function

> What. Functional requirements (system)

» A description of what the system isto do. What information
needs to be maintained? What needs to be processes?

* Functional reguirements capture the intended behavior of the
system. This behavior may be expressed as services, tasks or
functions the system is required to perform.

> How: Non-functional reguirements (system)
 How the system isto be constructed and function.

Types of requirement

Functional requirements.
— what the software should do.

Businessrequirements:

— requirements will be created that describe what the
busi ness needs.

User requirements.

— what the users need to do.
Non-functional reguirements:

— characteristics the system should have

System reguirements:
— how the system should be built

Software Requirements

o Statements of services the system should provide,
now the system should react to particular inputs and
now the system should behave in particular situations

 Functional requirements May state what the system
should not do

« Broadly software requirements should be categorized
IN two categories.

1. Functional Reguirements
2. Non-Functional Requirements

Software Requirements Characteristics

» Gathering software reguirementsis the foundation of the entire software
development project. Hence they must be clear, correct, and well-defined.
A complete Software Requirement Specifications must be:

— Clear

— Correct

— Consistent

— Coherent

— Comprehensible
— Modifiable

— Verifiable

— Prioritized

— Unambiguous
— Traceable

— Credible source

Functional Reguirements

* Requirements, which are related to functional aspect of software fall
Into this category.

« They define functions and functionality within and from the
software system.

EXAMPLES-

« The software automatically validates customers against the ABC
Con- tact Management System

 Example
* Only Managerial level employees have the right to view revenue
data The software system should be integrated with banking API

User should be able to mail any report to management Software is
developed keeping downward compatibility intact

Non-Functional Reguirements

They are implicit or expected characteristics of software, which
users make assumption of.

A non-functional requirement defines the quality attribute of a
software system. They represent a set of standards used to judge
the specific operation of a system

These define system properties and constraints e.g. reliability,
response time and storage requirements. Constraintsare I/O device
capability, system representations, etc They are implicit or expected
characteristics of software, which users make assumption of

May be more critical than functional requirements. |f these are not
met, the system may be useless.

Non-functional requirements may affect the overall architecture of
a system rather than the individual components

A single non-functional requirement, such as a security
requirement, may generate a number of related functional
requirementsthat define system servicesthat are required

Non-functional classifications

e Product requirements:-Reguirements which specify
that the delivered product must behave in a particular
way e.g. execution speed, reliability, etc

« QOrganizational requirements:-Reguirements which
are a conseguence of organisational policies and
procedures e.g. process standards used, implementation
reguirements, etc

e External reguirements.- Reguirements which arise
from factors which are external to the system and its
development process e.g. interoperability requirements,
legislative requirements, etc

Non-functional requirements include —

Security

Logging

Storage
Configuration
Performance
Cost
nteroperability
~lexibility
Disaster recovery
Accessibility

Metrics for specifying nonfunctional

requirements

Property

M easure

Speed

Processed transactions(second User)event response time
Screen refresh time

Size Mbytes Number of ROM chips

Ease of use Training time Number of help frames

Reliability Mean time to failure. Probability of unavailability. Rate
of failure occurrence Availability

Robustness Time to restart after failure Percentage of events causing
failure. Probability of data corruption on failure

Portability Percentage of target dependent statements Number of

target systems

Requirements are categorized logically as

e Must Have : Software cannot be said operational without
them.

e Should have : Enhancing the functionality of software.

e Could have: Software can still properly function with these
requirements.

e Wish list : These requirements do not map to any objectives
of software.

« While developing software, ‘Must have’ must be
Implemented, ‘Should have’ Is a matter of debate with
stakeholders and negation, whereas ‘Could have’ and
‘Wish list’ can be kept for software updates.

User Interface requirements

User Interface (Ul) is an important part of any software or hardware
or hybrid system. A software iswidely accepted if itis—

= easy to operate

= quick in response

= effectively handling operational errors

= providing ssimple yet consistent user interface

User acceptance mgorly depends upon how user can use the
software.

Ul isthe only way for usersto perceive the system.

A well performing software system must also be equipped with
attractive, clear, consistent, and responsive user interface.

Otherwise the functionalities of software system can not be used in
convenient way.

A system issaid to be good if it provides meansto use it efficiently.

User interface requirements are briefly mentioned
below

= Content presentation

= Easy Navigation

= Simple interface

= Responsive

= Consistent Ul elements

= Feedback mechanism

= Default settings

= Purposeful layout

= Strategical use of color and texture.
= Provide help information
= User centric approach

= Group based view settings.

Software System Analyst

o System analystinan IT organization is a person, who analyzes
the requirement of proposed system and ensures that
reguirements are concelved and documented properly and
accurately.

* Roleof an analyst starts during Software Analysis Phase of
SDLC.

o Itistheresponsbility of analyst to make sure that the
devel oped software meets the requirements of the client.

Needs analysis

1) Business per spective: An outline of the current business
climate, structure of company and the emerging industry issues
that are driving the project.

2) Technical perspective: An outline of existing I'T
systemg/infrastructure of the company including computer
hardware specifications, numbers and locations, details on
browsers, operating systems, servers, security policies, networks,
bandwidth capacity and so on.

3) Human per spective: An outline of the motivation of staff to
use new IT systems. It may also cover such considerations as PC
literacy, industrial relations issues for staff, legalities and even
language 1ssues for users.

System Analysts have the following responsibilities

v Analyzing and understanding requirements of intended
software

v Understanding how the project will contribute to the
organizational objectives

v" ldentify sources of requirement
v' Validation of requirement
v Develop and implement requirement management plan

v Documentation of business, technical, process, and product
reguirements

v" Coordination with clientsto prioritize requirements and
remove ambiguity

v" Finalizing acceptance criteriawith client and other
stakeholders

Users of a requirements
document

Specifty the requairements and
read them to cheack that thew
meet thewr neaeds. Thew
specify changes to the
reduuureInnents

Svstem customers

Use the requirements
document to plan a bad for
the svstem and to plan the

syvstem development process

) Tse the requarements to
S¥ystem engineers unnderstand what svstem i1s to
be developad

Swystem test TUse the requurements to
' develop validation tests for
the system

Use the reqgquirements to help
understand the svystem and
the relatrtonships between its
parts

Requirements specification

* The process of writing the user and system
reguirements in arequirements document

« User requirements have to be understandable
by end-users and customers who do not have a
technical background System requirements are
more detailed requirements and may include
more technical information

* Therequirements may be part of a contract for
the system development

Ways of writing a system requirements

specification
Notation |Pescription
Natural lan- | The requirements are written using numbered sentences in
Gauge natural language. Each sentence should express one require- ment
Structured The requirements are written in natural language on a stan-
natural dard form or template. Each field provides information about an aspect of the
Ianguage requirement
Design de- | Thisapproach uses alanguage like a programming language,
\scription but with more abstract features to specify the requirements by defining an
languages operational model of the system. This ap- proach is now rarely used although it
can be useful for in- terface specifications
Graphica Graphical models, supplemented by text annotations, are
Notations used to define the functional requirements for the system; UML use case and

sequence diagrams are used

Requirements and design

In principle, requirements should state what the system
should do and the design should describe how it does

this
In practice, requirements and design are inseparable
A system architecture may be designed to structure the

requirements The system may inter-operate with other
systemsthat generate design requirements

The use of a specific architecture to satisfy non-
functional reguirements may be a domain requirement

Thismay be the conseguence of aregulatory
reguirement

Guidelines for writing requirements

Invent astandard format and use it for all
requirements

Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements

o Usetext highlighting to identify key parts of the
requirement

 Avoid the use of computer jargon

* Include an explanation (rationale) of why a
requirement is necessary

Natural language specification

* Requirements are written as natural language
sentences supplemented by diagrams and
tables

o Used for writing reguirements because it is
expressive, intuitive and universal. This means
that the requirements can be understood by
users and customers

Problems with natural language

e Lack of clarity:- Precision isdifficult without
making the document difficult to read

* Reguirements confusion:- Functional and
non-functional reguirements tend to be mixed-
up

 Reguirementsamalgamation:- Several
different requirements may be expressed
together

Structured specifications

* An approach to writing requirements where the
freedom of the requirements writer islimited
and requirements are written in a standard
way

o Thisworkswell for some types of
requirements e.g. requirements for embedded
control system but Is sometimes too rigid for
writing business system requirements

Requirements reviews

* Regular reviews should be held while the
requirements definition is being formulated.

* Both client and contractor staff should be
iInvolved in reviews. Reviews may be formal
(with completed documents) or informal.

e (Good communications between devel opers,
customers and users can resolve problems at
an early stage.

Review checks

Verifiability: Isthe requirement realistically
testable?

Comprehensibility: Isthe requirement
properly understood?

Traceability: Isthe origin of the requirement
clearly stated?

Adaptability: Can the reguirement be changed
without a large impact on other requirements?

Reqguirements checking

Validity. Does the system provide the functions
which best support the customer’s needs?

Consistency. Are there any requirements
conflicts?

Completeness. Are all functions required by the
customer included?

Realism. Can the reguirements be implemented
given available budget and technology

Verifiability. Can the requirements be checked?

Reqguirements management

* Requirements management is the process of managing
changing requirements during the requirements
engineering process and system devel opment.

* New reguirements emerge as a system is being
developed and after it has gone into use.

e You need to keep track of individual requirements and
maintain links between dependent reguirements so that
you can assess the impact of reguirements changes. You
need to establish aformal process for making change
proposals and linking these to system reguirements

Changing requirements

 The business and technical environment of the
system always changes after installation

* The people who pay for a system and the users of
that system are rarely the same people

e System customers Impose requirements because
of organizational and budgetary constraints.
These may conflict with end-user requirements
and, after delivery, new features may have to be
added for user support if the system isto meet its
goals.

Changing requirements

o Large systemsusually have adiverse user
community, with many users having different
requirements and prioritiesthat may be
conflicting or contradictory

e Thefinal system reguirements are inevitably a
compromise between them and, with
experience, it is often discovered that the
balance of support given to different users has
to be changed

Requirements management planning

Establishes the level of requirements management detail that is
required
Requirements management decisions:

Requirements identification Each requirement must be uniquely
Identified so that it can be cross-referenced with other requirements.

A change management process Thisisthe set of activities that
assess the impact and cost of changes.

Traceability policies These policies define the relationships between
each requirement and between the requirements and the system
design that should be recorded.

Tool support Toolsthat may be used range from specialist
requirements management systems to spreadsheets and ssmple
database systems

Requirements management planning

« During the requirements engineering process, you have to
plan:
— Requirements identification
* How requirements are individually identified;
— A change management process
» The process followed when analysing a requirements change;
— Traceability policies
» The amount of information about requirements relationshipsthat is
mai ntai ned;
— CASE tool support
» Thetool support required to help manage requirements change;

Traceabillity

Traceability is concerned with the relationships between
requirements, their sources and the system design
Source traceability

— Links from requirements to stakeholders who proposed these
requirements,

Requirements traceability

— Links between dependent requirements,
Design traceability

— Linksfrom the requirements to the design;

A traceability matrix

Regq. 1.1 1.2 1.3 2.1 2.2 2.3 3.1
id

1.1 D

R
1.2 D D

1.3 R R

2.1 R D

Ji)

2.3 R D

3.1

3.2 R

wllw)

CASE tool support

* Requirements storage
— Requirements should be managed in a secure, managed data store.

« Change management

— The process of change management is a workflow process whose
stages can be defined and information flow between these stages
partially automated.

» Traceability management
— Automated retrieval of the links between requirements.

Requirements change management

« Should apply to all proposed changesto the
reguirements.

* Principal stages
— Problem analysis. Discuss requirements problem
and propose change;

— Change analysis and costing. A ssess effects of
change on other requirements;

— Change implementation. Modify requirements
document and other documents to reflect change.

Requirements change management

Deciding if a requirements change should be accepted

Problem analysis and change specification: During this stage, the
problem or the change proposal is analyzed to check that it isvalid.
Thisanalysisis fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to
withdraw the request.

Change analysis and costing: The effect of the proposed change is
assessed using traceability information and general knowledge of
the system requirements. Once thisanalysisis completed, a
decision is made whether or not to proceed with the requirements
change. Change implementation:

The requirements document and, where necessary, the system design
and implementation, are modified. |deally, the document should be
organized so that changes can be easily implemented

Requirements change management

Revised
requirements

Identified
problem

Problem analysis and
change specification

Change analysis
and costing

Change
implementation

Key points

he requirements engineering process includes
afeasibility study, requirements elicitation and
analysis, requirements specification and
reguirements management.

Requirements elicitation and analysisis
Iterative involving domain understanding,
reguirements collection, classification,
structuring, prioritisation and validation.

Systems have multiple stakeholders with
different requirements.

Key points

Social and organisation factors influence
system requirements.

Requirements validation is concerned with
checks for validity, consistency, completeness,
realism and verifiability.

Business changes inevitably lead to changing
reguirements.

Reqguirements management includes planning
and change management.

Software Metrics and Measures

Software Measures can be understood as a process of
guantifying and symbolizing various attributes and aspects
of software.

Software Metrics provide measures for various aspects of
software process and software product.

Software measures are fundamental requirements of
software engineering.

They not only help to control the software devel opment
procélelss but also aid to keep the quality of ultimate product
excellent.

According to Tom DeMarco, a (Software Engineer), “You
cannot control what you cannot measure.” By his saying, it
ISvery clear how important software measures are.

some software metrics

Size Metrics - Linesof Code (LOC) (), mostly
calculated in thousands of

delivered source code lines, denoted as KLOC.

= Function Point Count is measure of the functionality
provided by the software.

Function Point count defines the size of functional
aspect of the software.

Complexity Metrics - McCabe’s Cyclomatic
complexity quantifies the upper bound of the number of
Independent paths in a program, which is perceived as
complexity of the program or its modules. It is
represented in terms of graph theory concepts by using
control flow graph

o Quality Metrics - Defects, their types and causes,
conseguence, intensity of severity and their implications
define the quality of the product.

= The number of defects found in development process and
number of defects reported by the client after the product is
instg\lled or delivered at client end, define quality Of the
product.

e Process Metrics - In various phases of SDLC, the methods
and tools used, the company standards and the performance
of development are software process metrics.

* Resource Metrics - Effort, time, and various resources
used, represents metrics for resource measurement.

Summery

Requirements engineering is the process of developing a
software specification
« Requirements engineering process.
1. Feasbility study: Isit technically and financially feasible
to build the system?

2. Requirementsdlicitation and analysis. what do the
system stakeholders require or expect from the system?

3. Requirements specification: defining the requirementsin
detail
4. Reguirementsvalidation

Software Project Management

Chapter 3

