
Chapter 1

Introduction to Software
Engineering

INTRODUCTION TO
SOFTWARE ENGINEERING

INTRODUCTION TO
SOFTWARE ENGINEERING

CHAPTER ONE

WHAT IS SOFTWARE ENGINEERING
• The term software engineering is composed of two words, software and

engineering.

• Software is more than just a program code.

• A program is an executable code, which serves some computational purpose.

• Software is considered to be a collection of executable programming code,
associated libraries and documentations.

• Engineering on the other hand, is all about developing products, using well-
defined, scientific principles and methods.

• software engineering is an engineering branch associated with the
development of software product using well-defined scientific principles,
methods and procedures.

• The outcome of software engineering is an efficient and reliable software
product.

• Without using software engineering principles it would be difficult to develop
large programs

• Software engineering principles use two important techniques to reduce problem
complexity: abstraction and decomposition.

• The term software engineering is composed of two words, software and
engineering.

• Software is more than just a program code.

• A program is an executable code, which serves some computational purpose.

• Software is considered to be a collection of executable programming code,
associated libraries and documentations.

• Engineering on the other hand, is all about developing products, using well-
defined, scientific principles and methods.

• software engineering is an engineering branch associated with the
development of software product using well-defined scientific principles,
methods and procedures.

• The outcome of software engineering is an efficient and reliable software
product.

• Without using software engineering principles it would be difficult to develop
large programs

• Software engineering principles use two important techniques to reduce problem
complexity: abstraction and decomposition.

NEED OF SOFTWARE ENGINEERING
The need of software engineering arises because of higher rate of change in user
requirements and environment on which the software is working.

• Large software - It is easier to build a wall than to a house or building, likewise, as the
size of software become large engineering has to step to give it a scientific process.

• Scalability- If the software process were not based on scientific and engineering
concepts, it would be easier to re-create new software than to scale an existing one.

• Cost- As hardware industry has shown its skills and huge manufacturing has lower
down the price of computer and electronic hardware. But the cost of software remains
high if proper process is not adapted.

• Dynamic Nature- The always growing and adapting nature of software hugely depends
upon the environment in which the user works. If the nature of software is always
changing, new enhancements need to be done in the existing one. This is where software
engineering plays a good role.

• Quality Management- Better process of software development provides better and
quality software product.

NEE

The need of software engineering arises because of higher rate of change in user
requirements and environment on which the software is working.

• Large software - It is easier to build a wall than to a house or building, likewise, as the
size of software become large engineering has to step to give it a scientific process.

• Scalability- If the software process were not based on scientific and engineering
concepts, it would be easier to re-create new software than to scale an existing one.

• Cost- As hardware industry has shown its skills and huge manufacturing has lower
down the price of computer and electronic hardware. But the cost of software remains
high if proper process is not adapted.

• Dynamic Nature- The always growing and adapting nature of software hugely depends
upon the environment in which the user works. If the nature of software is always
changing, new enhancements need to be done in the existing one. This is where software
engineering plays a good role.

• Quality Management- Better process of software development provides better and
quality software product.

NEE

Characteristics of Good Software
Operational :-This
tells us how well
software works in
operations. It can be
measured on:

• Budget

• Usability

• Efficiency

• Correctness

• Functionality

• Dependability

• Security

• Safety

Transitional: This aspect is important when the software is moved from one platform to
another:

• Portability

• Reusability

Transitional: This aspect is important when the software is moved from one platform to
another:

• Portability

• Reusability

Maintenance: how well software has the capabilities to maintain itself in the ever
changing environment:

• Modularity

• Maintainability

• Flexibility

• Scalability

Professional and ethical responsibility

• Software engineering involves wider
responsibilities than simply the application of
technical skills

• Software engineers must behave in an honest and
ethically responsible way if they are to be
respected as professionals

7

• Software engineering involves wider
responsibilities than simply the application of
technical skills

• Software engineers must behave in an honest and
ethically responsible way if they are to be
respected as professionals

Issues of professional responsibility

• Confidentiality

– Engineers should normally respect the confidentiality
of their employers or clients.

• Competence
– Engineers should not misrepresent their level of

competence. They should not accept work beyond
their competence.

8

• Confidentiality

– Engineers should normally respect the confidentiality
of their employers or clients.

• Competence
– Engineers should not misrepresent their level of

competence. They should not accept work beyond
their competence.

• Intellectual property rights

– Engineers should be aware of local laws governing
the use of intellectual property such as patents,
copyright, etc. They should be careful to ensure that
the intellectual property of employers and clients is
protected.

• Computer misuse

– Software engineers should not use their technical
skills to misuse other people’s computers.

• Computer misuse ranges from relatively trivial (game
playing on an employer’s machine) to extremely serious
(dissemination of viruses).

9

• Intellectual property rights

– Engineers should be aware of local laws governing
the use of intellectual property such as patents,
copyright, etc. They should be careful to ensure that
the intellectual property of employers and clients is
protected.

• Computer misuse

– Software engineers should not use their technical
skills to misuse other people’s computers.

• Computer misuse ranges from relatively trivial (game
playing on an employer’s machine) to extremely serious
(dissemination of viruses).

Software engineering ethicsSoftware engineering ethics
Some of these are:

1. Confidentiality You should normally respect the confidentiality of your
employers or clients irrespective of whether or not a formal confidentiality
agreement
has been signed.
2. Competence You should not misrepresent your level of competence.

• You should not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright.

• You should be careful to ensure that the intellectual property of employers and
clients is protected.
4. Computer misuse You should not use your technical skills to misuse other
people’s computers.

• Computer misuse ranges from relatively trivial (game playing on an
employer’s machine, say) to extremely serious (dissemination of viruses or
other malware).

Some of these are:
1. Confidentiality You should normally respect the confidentiality of your
employers or clients irrespective of whether or not a formal confidentiality
agreement
has been signed.
2. Competence You should not misrepresent your level of competence.

• You should not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the
use of intellectual property such as patents and copyright.

• You should be careful to ensure that the intellectual property of employers and
clients is protected.
4. Computer misuse You should not use your technical skills to misuse other
people’s computers.

• Computer misuse ranges from relatively trivial (game playing on an
employer’s machine, say) to extremely serious (dissemination of viruses or
other malware).

SOFTWARE ENGINEERING - A LAYERED
TECHNOLOGY:

The following are the set of Umbrella
Activities.

• Software project tracking and control – allows the software team
to assess progress against

• the project plan and take necessary action to maintain schedule.
• Risk Management - assesses risks that may effect the outcome of

the project or the quality of
• the product.
• Software Quality Assurance - defines and conducts the activities

required to ensure
• software quality.
• Formal Technical Reviews - assesses software engineering work

products in an effort to
• uncover and remove errors before they are propagated to the next

action or activity.

• Software project tracking and control – allows the software team
to assess progress against

• the project plan and take necessary action to maintain schedule.
• Risk Management - assesses risks that may effect the outcome of

the project or the quality of
• the product.
• Software Quality Assurance - defines and conducts the activities

required to ensure
• software quality.
• Formal Technical Reviews - assesses software engineering work

products in an effort to
• uncover and remove errors before they are propagated to the next

action or activity.

• Measurement - define and collects process, project and
product measures that assist the team in

• delivering software that needs customer‘s needs, can be
used in conjunction with all other framework and umbrella
activities.

• Software configuration management - manages the
effects of change throughout the software process.

• Reusability management - defines criteria for work
product reuse and establishes mechanisms to achieve
reusable components.

• Work Product preparation and production -
encompasses the activities required to create work
products such as models, document, logs, forms and lists.

• Measurement - define and collects process, project and
product measures that assist the team in

• delivering software that needs customer‘s needs, can be
used in conjunction with all other framework and umbrella
activities.

• Software configuration management - manages the
effects of change throughout the software process.

• Reusability management - defines criteria for work
product reuse and establishes mechanisms to achieve
reusable components.

• Work Product preparation and production -
encompasses the activities required to create work
products such as models, document, logs, forms and lists.

Chapter 2

Software Processes

“You’ve got to be very careful if you don’t know where you’re going,
because you might not get there.”

Yogi Berra

Learning outcomes:

• What is software process?

• Understand that organizations and their members are
systems and that analysts need to take a systems
perspective.

• Depict systems graphically using context-level data
flow diagrams, entity-relationship models, and use
cases and use case scenarios.

• Comprehend that organizational culture impacts the
design of information systems

• What is software process?

• Understand that organizations and their members are
systems and that analysts need to take a systems
perspective.

• Depict systems graphically using context-level data
flow diagrams, entity-relationship models, and use
cases and use case scenarios.

• Comprehend that organizational culture impacts the
design of information systems

Software processes
• There are many different software processes but all

must include four activities that are fundamental to
software engineering:
1. Software specification The functionality of the
software and constraints on its operation must be
defined.
2. Software design and implementation The software to
meet the specification must be produced.
3. Software validation The software must be validated
to ensure that it does what the customer wants.
4. Software evolution The software must evolve to meet
changing customer needs

• There are many different software processes but all
must include four activities that are fundamental to
software engineering:
1. Software specification The functionality of the
software and constraints on its operation must be
defined.
2. Software design and implementation The software to
meet the specification must be produced.
3. Software validation The software must be validated
to ensure that it does what the customer wants.
4. Software evolution The software must evolve to meet
changing customer needs

Software processes

• A structured set of activities required to
develop a software system

• A software process model is an abstract
representation of a process.

• It presents a description of a process from
some particular perspective

• A structured set of activities required to
develop a software system

• A software process model is an abstract
representation of a process.

• It presents a description of a process from
some particular perspective

Process descriptions may also include:

When we describe and discuss processes, we usually talk about
the activities in these processes such as specifying a data model,
designing a user interface, etc. and the ordering of these activities

Software process descriptions

Process descriptions may also include:

• Products, which are the outcomes of a process activity;
• Roles, which reflect the responsibilities of the people

involved in the process;
• Pre- and post-conditions, which are statements that are

true before and after a process activity has been enacted
or a product produced.

Software processes types

• Software processes may be categorized as either plan-
driven or agile processes

• Plan-driven processes are processes where all of the
process activities are planned in advance and progress is
measured against this plan

• agile processes, planning is incremental and it is easier to
change the process to reflect changing customer
requirements.

• In practice, most practical processes include elements of
both plan-driven and agile approaches

• There are no right or wrong software processes

• Software processes may be categorized as either plan-
driven or agile processes

• Plan-driven processes are processes where all of the
process activities are planned in advance and progress is
measured against this plan

• agile processes, planning is incremental and it is easier to
change the process to reflect changing customer
requirements.

• In practice, most practical processes include elements of
both plan-driven and agile approaches

• There are no right or wrong software processes

SDLC Model
A framework that describes the activities
performed at each stage of a software
development project.

A framework that describes the activities
performed at each stage of a software
development project.

Systems Development Methodologies
• In the continuing effort to improve the systems analysis and

design process, several different methodologies have been
developed. Some of the popular and widely used
methodologies are:

i. Waterfall Model
ii. Prototyping Model
iii. Iterative Enhancement Model
iv. Spiral Model
v. Rapid Application Model
vi. Big Bang Model

• In the continuing effort to improve the systems analysis and
design process, several different methodologies have been
developed. Some of the popular and widely used
methodologies are:

i. Waterfall Model
ii. Prototyping Model
iii. Iterative Enhancement Model
iv. Spiral Model
v. Rapid Application Model
vi. Big Bang Model

Waterfall Model
• Requirements – defines

needed information,
function, behavior,
performance and interfaces.

• Design – data structures,
software architecture,
interface representations,
algorithmic details.

• Implementation – source
code, database, user
documentation, testing.

• Requirements – defines
needed information,
function, behavior,
performance and interfaces.

• Design – data structures,
software architecture,
interface representations,
algorithmic details.

• Implementation – source
code, database, user
documentation, testing.

Waterfall Strengths
• Easy to understand, easy to use

• Provides structure to inexperienced staff

• Milestones are well understood

• Sets requirements stability

• Good for management control (plan, staff, track)

• Works well when quality is more important than cost
or schedule

• Easy to understand, easy to use

• Provides structure to inexperienced staff

• Milestones are well understood

• Sets requirements stability

• Good for management control (plan, staff, track)

• Works well when quality is more important than cost
or schedule

Waterfall Deficiencies
• All requirements must be known upfront
• Can give a false impression of progress
• Does not reflect problem-solving nature of software

development – iterations of phases
• Integration is one big bang at the end
• Little opportunity for customer to preview the system

(until it may be too late)

• All requirements must be known upfront
• Can give a false impression of progress
• Does not reflect problem-solving nature of software

development – iterations of phases
• Integration is one big bang at the end
• Little opportunity for customer to preview the system

(until it may be too late)

When to use the Waterfall Model

• Requirements are very well known
• Technology is understood
• New version of an existing product
• Porting an existing product to a new platform.

• Requirements are very well known
• Technology is understood
• New version of an existing product
• Porting an existing product to a new platform.

V-Shaped Model
• A variant of the

Waterfall that
emphasizes the
verification and
validation of the
product.

• Testing of the product
is planned in parallel
with a corresponding
phase of development

• A variant of the
Waterfall that
emphasizes the
verification and
validation of the
product.

• Testing of the product
is planned in parallel
with a corresponding
phase of development

V-Shaped Steps
• Project and Requirements Planning –

allocate resources

• Product Requirements and
Specification Analysis – complete
specification of the software system

• Architecture or High-Level Design –
defines how software functions fulfill
the design

• Detailed Design – develop algorithms
for each architectural component

• Production, operation and
maintenance – provide for
enhancement and corrections

• System and acceptance testing –
check the entire software system in its
environment

• Integration and Testing – check that
modules interconnect correctly

• Unit testing – check that each module
acts as expected

• Coding – transform algorithms into
software

• Project and Requirements Planning –
allocate resources

• Product Requirements and
Specification Analysis – complete
specification of the software system

• Architecture or High-Level Design –
defines how software functions fulfill
the design

• Detailed Design – develop algorithms
for each architectural component

• Production, operation and
maintenance – provide for
enhancement and corrections

• System and acceptance testing –
check the entire software system in its
environment

• Integration and Testing – check that
modules interconnect correctly

• Unit testing – check that each module
acts as expected

• Coding – transform algorithms into
software

V-Shaped Strengths
• Emphasize planning for verification and

validation of the product in early stages of
product development

• Each deliverable must be testable

• Project management can track progress by
milestones

• Easy to use

• Emphasize planning for verification and
validation of the product in early stages of
product development

• Each deliverable must be testable

• Project management can track progress by
milestones

• Easy to use

V-Shaped Weaknesses
• Does not easily handle dynamic changes in

requirements

• Does not contain risk analysis activities

When to use the V-Shaped Model

• Excellent choice for systems requiring high
reliability – hospital patient control
applications

• All requirements are known up-front
• When it can be modified to handle changing

requirements beyond analysis phase
• Solution and technology are known

• Excellent choice for systems requiring high
reliability – hospital patient control
applications

• All requirements are known up-front
• When it can be modified to handle changing

requirements beyond analysis phase
• Solution and technology are known

Prototyping Model
• Developers build a prototype

during the requirements phase
• Prototype is evaluated by end

users
• Users give corrective feedback
• Developers further refine the

prototype
• When the user is satisfied, the

prototype code is brought up to
the standards needed for a final
product.

• Developers build a prototype
during the requirements phase

• Prototype is evaluated by end
users

• Users give corrective feedback
• Developers further refine the

prototype
• When the user is satisfied, the

prototype code is brought up to
the standards needed for a final
product.

Structured Evolutionary Prototyping Steps

• A preliminary project plan is developed
• Partial high-level paper model is created
• The model is source for a partial requirements

specification
• A prototype is built with basic and critical attributes
• The designer builds

– the database
– user interface
– algorithmic functions

• The designer demonstrates the prototype, the user
evaluates for problems and suggests improvements.

• This loop continues until the user is satisfied

• A preliminary project plan is developed
• Partial high-level paper model is created
• The model is source for a partial requirements

specification
• A prototype is built with basic and critical attributes
• The designer builds

– the database
– user interface
– algorithmic functions

• The designer demonstrates the prototype, the user
evaluates for problems and suggests improvements.

• This loop continues until the user is satisfied

Structured Evolutionary Prototyping Strengths

• Customers can “see” the system requirements as they
are being gathered

• Developers learn from customers
• A more accurate end product
• Unexpected requirements accommodated
• Allows for flexible design and development
• Steady, visible signs of progress produced
• Interaction with the prototype stimulates awareness of

additional needed functionality

• Customers can “see” the system requirements as they
are being gathered

• Developers learn from customers
• A more accurate end product
• Unexpected requirements accommodated
• Allows for flexible design and development
• Steady, visible signs of progress produced
• Interaction with the prototype stimulates awareness of

additional needed functionality

S.E Prototyping Weaknesses

• Tendency to abandon structured program
development for “code-and-fix” development

• Bad reputation for “quick-and-dirty” methods
• Overall maintainability may be overlooked

• The customer may want the prototype delivered.

• Process may continue forever (scope creep)

• Tendency to abandon structured program
development for “code-and-fix” development

• Bad reputation for “quick-and-dirty” methods
• Overall maintainability may be overlooked

• The customer may want the prototype delivered.

• Process may continue forever (scope creep)

When to use Structured Evolutionary Prototyping

• Requirements are unstable or have to be clarified

• As the requirements clarification stage of a waterfall
model

• Develop user interfaces

• Short-lived demonstrations

• New, original development

• With the analysis and design portions of object-
oriented development.

• Requirements are unstable or have to be clarified

• As the requirements clarification stage of a waterfall
model

• Develop user interfaces

• Short-lived demonstrations

• New, original development

• With the analysis and design portions of object-
oriented development.

Rapid Application Model (RAD)

• Requirements planning phase (a workshop utilizing
structured discussion of business problems)

• User description phase – automated tools capture
information from users

• Construction phase – productivity tools, such as code
generators, screen generators, etc. inside a time-box.
(“Do until done”)

• Cutover phase -- installation of the system, user
acceptance testing and user training

• Requirements planning phase (a workshop utilizing
structured discussion of business problems)

• User description phase – automated tools capture
information from users

• Construction phase – productivity tools, such as code
generators, screen generators, etc. inside a time-box.
(“Do until done”)

• Cutover phase -- installation of the system, user
acceptance testing and user training

RAD Strengths
• Reduced cycle time and improved productivity with

fewer people means lower costs
• Time-box approach mitigates cost and schedule risk
• Customer involved throughout the complete cycle

minimizes risk of not achieving customer satisfaction
and business needs

• Reduced cycle time and improved productivity with
fewer people means lower costs

• Time-box approach mitigates cost and schedule risk
• Customer involved throughout the complete cycle

minimizes risk of not achieving customer satisfaction
and business needs

RAD Weaknesses
• Accelerated development process must give quick

responses to the user
• Hard to use with legacy systems
• Requires a system that can be modularized
• Developers and customers must be committed to

rapid-fire activities in an abbreviated time frame.

• Accelerated development process must give quick
responses to the user

• Hard to use with legacy systems
• Requires a system that can be modularized
• Developers and customers must be committed to

rapid-fire activities in an abbreviated time frame.

When to use RAD
• Reasonably well-known requirements

• User involved throughout the life cycle

• Project can be time-boxed

• Functionality delivered in increments

• High performance not required

• Low technical risks

• System can be modularized

• Reasonably well-known requirements

• User involved throughout the life cycle

• Project can be time-boxed

• Functionality delivered in increments

• High performance not required

• Low technical risks

• System can be modularized

Spiral Model

• This model considers risk, which often goes
un-noticed by most other models.

• The model starts with determining objectives
and constraints of the software at the start of
one iteration.

• Next phase is of prototyping the software. This
includes risk analysis.

• In the fourth phase of the plan of next iteration
is prepared.

• This model considers risk, which often goes
un-noticed by most other models.

• The model starts with determining objectives
and constraints of the software at the start of
one iteration.

• Next phase is of prototyping the software. This
includes risk analysis.

• In the fourth phase of the plan of next iteration
is prepared.

Prototyping Model
• This model considers risk,

which often goes un-noticed by
most other models.

• The model starts with
determining objectives and
constraints of the software at the
start of one iteration.

• Next phase is of prototyping the
software. This includes risk
analysis.

• In the fourth phase of the plan
of next iteration is prepared. .

• This model considers risk,
which often goes un-noticed by
most other models.

• The model starts with
determining objectives and
constraints of the software at the
start of one iteration.

• Next phase is of prototyping the
software. This includes risk
analysis.

• In the fourth phase of the plan
of next iteration is prepared. .

Advantages
• It provides the potential for rapid development of

increasingly more complete versions of the
software.

• The spiral model is a realistic approach to the
development of large-scale systems and software.

• The spiral model uses prototyping as a risk
reduction mechanism but, more importantly
enables the developer to apply the prototyping
approach at any stage in the evolution of the
product.

• It provides the potential for rapid development of
increasingly more complete versions of the
software.

• The spiral model is a realistic approach to the
development of large-scale systems and software.

• The spiral model uses prototyping as a risk
reduction mechanism but, more importantly
enables the developer to apply the prototyping
approach at any stage in the evolution of the
product.

Draw Backs

• The spiral model is not a panacea.

• It may be difficult to convince customers that
the evolutionary approach is controllable.

• It demands considerable risk assessment
expertise and relies on this expertise for
success.

• If a major risk is not uncovered and managed,
problems will undoubtedly occur.

• The spiral model is not a panacea.

• It may be difficult to convince customers that
the evolutionary approach is controllable.

• It demands considerable risk assessment
expertise and relies on this expertise for
success.

• If a major risk is not uncovered and managed,
problems will undoubtedly occur.

Big Bang Model
• This model is the simplest model in its form. It

requires little planning, lots of
• programming and lots of funds. This model is

conceptualized around the big bang
• of universe. As scientists say that after big bang

lots of galaxies, planets, and
• stars evolved just as an event. Likewise, if we put

together lots of programming
• and funds, you may achieve the best software

product.

• This model is the simplest model in its form. It
requires little planning, lots of

• programming and lots of funds. This model is
conceptualized around the big bang

• of universe. As scientists say that after big bang
lots of galaxies, planets, and

• stars evolved just as an event. Likewise, if we put
together lots of programming

• and funds, you may achieve the best software
product.

Iterative Model

• The iterative enhancement life cycle model
counters the limitations of the waterfall model
and tries to combine the benefits of both
prototyping and the waterfall model

• The iterative enhancement life cycle model
counters the limitations of the waterfall model
and tries to combine the benefits of both
prototyping and the waterfall model

Advantages of Iterative Model

i. i. This approach can result in better testing

ii. ii. The increments provides feedback to the
client which is useful for determining the
final

i. i. This approach can result in better testing

ii. ii. The increments provides feedback to the
client which is useful for determining the
final

Fundamental of Software
Engineering

Chapter 3: Requirement
Engineering

Topics covered

• Feasibility studies

• Requirements elicitation and analysis

• Requirements validation

• Requirements management

• Feasibility studies

• Requirements elicitation and analysis

• Requirements validation

• Requirements management

Objectives

• To describe the principal requirements
engineering activities

• To introduce techniques for requirements
elicitation and analysis

• To describe requirements validation

• To discuss the role of requirements
management in support of other requirements
engineering processes

• To describe the principal requirements
engineering activities

• To introduce techniques for requirements
elicitation and analysis

• To describe requirements validation

• To discuss the role of requirements
management in support of other requirements
engineering processes

Requirements engineering (RE)

• The process to gather the software
requirements from client, analyze, and
document them is known as requirement
engineering. The goal of requirement
engineering is to develop and maintain
sophisticated and descriptive ‘System
Requirements Specification’ document.

• The process to gather the software
requirements from client, analyze, and
document them is known as requirement
engineering. The goal of requirement
engineering is to develop and maintain
sophisticated and descriptive ‘System
Requirements Specification’ document.

Requirements engineeringRequirements engineering
processesprocesses

• The processes used for RE vary widely depending on
the application domain, the people involved and the
organization developing the requirements

• However, there are a number of generic activities
common to all processes

1. Feasibility Study
2. Requirements elicitation/ Requirement Gathering
3. Requirements Specification / Requirement analysis
4. Requirements validation
5. Requirements management
• In practice, RE is an iterative activity in which these

processes are interleaved

• The processes used for RE vary widely depending on
the application domain, the people involved and the
organization developing the requirements

• However, there are a number of generic activities
common to all processes

1. Feasibility Study
2. Requirements elicitation/ Requirement Gathering
3. Requirements Specification / Requirement analysis
4. Requirements validation
5. Requirements management
• In practice, RE is an iterative activity in which these

processes are interleaved

The requirements engineering process

Feasibility studies

• A feasibility study decides whether or not the
proposed system is worthwhile.

• A short focused study that checks
– If the system contributes to organisational

objectives;

– If the system can be engineered using current
technology and within budget;

– If the system can be integrated with other systems
that are used.

• A feasibility study decides whether or not the
proposed system is worthwhile.

• A short focused study that checks
– If the system contributes to organisational

objectives;

– If the system can be engineered using current
technology and within budget;

– If the system can be integrated with other systems
that are used.

Feasibility study implementation
• Based on information assessment (what is required),

information collection and report writing.

• Questions for people in the organisation
– What if the system wasn’t implemented?
– What are current process problems?

– How will the proposed system help?

– What will be the integration problems?

– Is new technology needed? What skills?

– What facilities must be supported by the proposed system?

• Based on information assessment (what is required),
information collection and report writing.

• Questions for people in the organisation
– What if the system wasn’t implemented?
– What are current process problems?

– How will the proposed system help?

– What will be the integration problems?

– Is new technology needed? What skills?

– What facilities must be supported by the proposed system?

Elicitation and analysis
• Sometimes called requirements elicitation or requirements

discovery.

• Involves technical staff working with customers to find out
about the application domain, the services that the system
should provide and the system’s operational constraints.

• May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc. These are
called stakeholders.

• Sometimes called requirements elicitation or requirements
discovery.

• Involves technical staff working with customers to find out
about the application domain, the services that the system
should provide and the system’s operational constraints.

• May involve end-users, managers, engineers involved in
maintenance, domain experts, trade unions, etc. These are
called stakeholders.

Problems of requirements analysis
• Stakeholders don’t know what they really want.
• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements.

• Organisational and political factors may influence the system
requirements.

• The requirements change during the analysis process. New
stakeholders may emerge and the business environment
change.

• Stakeholders don’t know what they really want.
• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements.

• Organisational and political factors may influence the system
requirements.

• The requirements change during the analysis process. New
stakeholders may emerge and the business environment
change.

The requirements analysis process

Requirement Gathering

• If the feasibility report is positive towards
undertaking the project, next phase starts with
gathering requirements from the user.

• Analysts and engineers communicate with the
client and end-users to know their ideas on
what the software should provide and which
features they want the software to include.

• If the feasibility report is positive towards
undertaking the project, next phase starts with
gathering requirements from the user.

• Analysts and engineers communicate with the
client and end-users to know their ideas on
what the software should provide and which
features they want the software to include.

Software Requirement Specification (SRS)

• SRS is a document created by system analyst after the
requirements are collected from various stakeholders.

• SRS defines how the intended software will interact with
hardware, external
interfaces, speed of operation, response time of system,
portability of software across various platforms,
maintainability, speed of recovery after crashing, Security,
Quality, Limitations etc.

• The requirements received from client are written in natural
language.

• It is the responsibility of the system analyst to document
the requirements in technical language so that they can be
comprehended and used by the software development team.

• SRS is a document created by system analyst after the
requirements are collected from various stakeholders.

• SRS defines how the intended software will interact with
hardware, external
interfaces, speed of operation, response time of system,
portability of software across various platforms,
maintainability, speed of recovery after crashing, Security,
Quality, Limitations etc.

• The requirements received from client are written in natural
language.

• It is the responsibility of the system analyst to document
the requirements in technical language so that they can be
comprehended and used by the software development team.

SRS should come up with the following features:

• User Requirements are expressed in natural
language.

• Technical requirements are expressed in
structured language, which is used inside the
organization.

• Design description should be written in Pseudo
code.

• Format of Forms and GUI screen prints.
• Conditional and mathematical notations for DFDs

etc.

• User Requirements are expressed in natural
language.

• Technical requirements are expressed in
structured language, which is used inside the
organization.

• Design description should be written in Pseudo
code.

• Format of Forms and GUI screen prints.
• Conditional and mathematical notations for DFDs

etc.

Software Requirement Validation
• After requirement specifications are developed, the requirements

mentioned in this document are validated. User might ask for illegal,
impractical solution or
experts may interpret the requirements inaccurately.

• This results in huge increase in cost if not nipped in the bud.

Requirements can be checked against following conditions

• If they can be practically implemented
• If they are valid and as per functionality and domain of software
• If there are any ambiguities
• If they are complete
• If they can be demonstrated

• After requirement specifications are developed, the requirements
mentioned in this document are validated. User might ask for illegal,
impractical solution or
experts may interpret the requirements inaccurately.

• This results in huge increase in cost if not nipped in the bud.

Requirements can be checked against following conditions

• If they can be practically implemented
• If they are valid and as per functionality and domain of software
• If there are any ambiguities
• If they are complete
• If they can be demonstrated

Requirement Elicitation Process

• Requirement elicitation process can be
depicted using the following diagram:

• Requirement elicitation process can be
depicted using the following diagram:

 Requirements discovery: - The developers discuss with the client and end
users and know their expectations from the software. Domain requirements
are also discovered at this stage

 Requirements classification and organisation:-Groups related requirements
and organizes them into coherent clusters

- The developers prioritize and arrange the requirements in order of
importance, urgency and convenience.

- Prioritizing requirements and resolving requirements conflicts

 Negotiation & discussion - If requirements are ambiguous or there are some
conflicts in requirements of various stakeholders, it is then negotiated and
discussed with the stakeholders. Requirements may then be prioritized and
Unrealistic requirements are compromised reasonably.

• The requirements come from various stakeholders. To remove the ambiguity
and conflicts, they are discussed for clarity and correctness.

 Requirements specification:-Documentation - All formal and informal,
functional and non-functional requirements are documented and made
available for next phase processing.

 Requirements discovery: - The developers discuss with the client and end
users and know their expectations from the software. Domain requirements
are also discovered at this stage

 Requirements classification and organisation:-Groups related requirements
and organizes them into coherent clusters

- The developers prioritize and arrange the requirements in order of
importance, urgency and convenience.

- Prioritizing requirements and resolving requirements conflicts

 Negotiation & discussion - If requirements are ambiguous or there are some
conflicts in requirements of various stakeholders, it is then negotiated and
discussed with the stakeholders. Requirements may then be prioritized and
Unrealistic requirements are compromised reasonably.

• The requirements come from various stakeholders. To remove the ambiguity
and conflicts, they are discussed for clarity and correctness.

 Requirements specification:-Documentation - All formal and informal,
functional and non-functional requirements are documented and made
available for next phase processing.

Problems of requirements elicitation

• Stakeholders don’t know what they really want.
• Stakeholders express requirements in their own

terms.
• Different stakeholders may have conflicting

requirements. Organizational and political factors
may influence the system requirements.

• The requirements change during the analysis
process.

• New stakeholders may emerge and the business
environment change

• Stakeholders don’t know what they really want.
• Stakeholders express requirements in their own

terms.
• Different stakeholders may have conflicting

requirements. Organizational and political factors
may influence the system requirements.

• The requirements change during the analysis
process.

• New stakeholders may emerge and the business
environment change

Requirements validation techniques

• Requirements reviews;- Systematic manual
analysis of the requirements

• Prototyping:- Using an executable model of
the system to check requirements

• Test-case generation:- Developing tests for
requirements to check testability

• Requirements reviews;- Systematic manual
analysis of the requirements

• Prototyping:- Using an executable model of
the system to check requirements

• Test-case generation:- Developing tests for
requirements to check testability

Requirement Elicitation Techniques
There are various ways to discover requirements. Some of

them are explained below:

 Interviews
 Surveys
Questionnaires
 Task analysis
Domain Analysis
 Prototyping
 Brainstorming
Observation

There are various ways to discover requirements. Some of
them are explained below:

 Interviews
 Surveys
Questionnaires
 Task analysis
Domain Analysis
 Prototyping
 Brainstorming
Observation

Interviews

• Interviews are strong medium to collect requirements. Organization may conduct

• several types of interviews such as:

• Structured (closed) interviews, where every single information to gather is

• decided in advance, they follow pattern and matter of discussion firmly.

• Non-structured (open) interviews, where information to gather is not decided in advance,
more flexible and less biased.

• Oral interviews

• Written interviews

• One-to-one interviews which are held between two persons across the table.

• Group interviews which are held between groups of participants. They help

• to uncover any missing requirement as numerous people are involved.

Surveys

• Organization may conduct surveys among various stakeholders by querying about

• their expectation and requirements from the upcoming system.

Interviews

• Interviews are strong medium to collect requirements. Organization may conduct

• several types of interviews such as:

• Structured (closed) interviews, where every single information to gather is

• decided in advance, they follow pattern and matter of discussion firmly.

• Non-structured (open) interviews, where information to gather is not decided in advance,
more flexible and less biased.

• Oral interviews

• Written interviews

• One-to-one interviews which are held between two persons across the table.

• Group interviews which are held between groups of participants. They help

• to uncover any missing requirement as numerous people are involved.

Surveys

• Organization may conduct surveys among various stakeholders by querying about

• their expectation and requirements from the upcoming system.

Questionnaires
• A document with pre-defined set of objective questions and

respective options is handed over to all stakeholders to answer,
which are collected and compiled.

• A shortcoming of this technique is, if an option for some issue is not
mentioned in the questionnaire, the issue might be left unattended.
Task analysis

• Team of engineers and developers may analyze the operation for
which the new system is required.

• If the client already has some software to perform certain operation,
it is studied and requirements of proposed system are collected.
Domain Analysis

• Every software falls into some domain category. The expert people in
the domain

• can be a great help to analyze general and specific requirements.
Brainstorming

• An informal debate is held among various stakeholders and all their
inputs are recorded for further requirements analysis.

Questionnaires
• A document with pre-defined set of objective questions and

respective options is handed over to all stakeholders to answer,
which are collected and compiled.

• A shortcoming of this technique is, if an option for some issue is not
mentioned in the questionnaire, the issue might be left unattended.
Task analysis

• Team of engineers and developers may analyze the operation for
which the new system is required.

• If the client already has some software to perform certain operation,
it is studied and requirements of proposed system are collected.
Domain Analysis

• Every software falls into some domain category. The expert people in
the domain

• can be a great help to analyze general and specific requirements.
Brainstorming

• An informal debate is held among various stakeholders and all their
inputs are recorded for further requirements analysis.

Prototyping
• Prototyping is building user interface without adding detail functionality for user
• to interpret the features of intended software product. It helps giving better idea
• of requirements. If there is no software installed at client’s end for developer’s
• reference and the client is not aware of its own requirements, the developer
• creates a prototype based on initially mentioned requirements. The prototype is
• shown to the client and the feedback is noted. The client feedback serves as an
• input for requirement gathering.

Observation
• Team of experts visit the client’s organization or workplace. They observe the
• actual working of the existing installed systems. They observe the workflow at the
• client’s end and how execution problems are dealt. The team itself draws some
• conclusions which aid to form requirements expected from the software.

Prototyping
• Prototyping is building user interface without adding detail functionality for user
• to interpret the features of intended software product. It helps giving better idea
• of requirements. If there is no software installed at client’s end for developer’s
• reference and the client is not aware of its own requirements, the developer
• creates a prototype based on initially mentioned requirements. The prototype is
• shown to the client and the feedback is noted. The client feedback serves as an
• input for requirement gathering.

Observation
• Team of experts visit the client’s organization or workplace. They observe the
• actual working of the existing installed systems. They observe the workflow at the
• client’s end and how execution problems are dealt. The team itself draws some
• conclusions which aid to form requirements expected from the software.

What is RequirementWhat is Requirement
• A requirement is simply a statement of what the system must

do or what characteristics it needs to have. During a systems
development project.

 Why: Enterprise requirements
• Context analysis: the reason why the system to be created.

Constraints on the environment in which the system is to
function

 What: Functional requirements (system)
• A description of what the system is to do. What information

needs to be maintained? What needs to be processes?
• Functional requirements capture the intended behavior of the

system. This behavior may be expressed as services, tasks or
functions the system is required to perform.

 How: Non-functional requirements (system)
• How the system is to be constructed and function.

• A requirement is simply a statement of what the system must
do or what characteristics it needs to have. During a systems
development project.

 Why: Enterprise requirements
• Context analysis: the reason why the system to be created.

Constraints on the environment in which the system is to
function

 What: Functional requirements (system)
• A description of what the system is to do. What information

needs to be maintained? What needs to be processes?
• Functional requirements capture the intended behavior of the

system. This behavior may be expressed as services, tasks or
functions the system is required to perform.

 How: Non-functional requirements (system)
• How the system is to be constructed and function.

Types of requirementTypes of requirement

• Functional requirements:
– what the software should do.

• Business requirements:
– requirements will be created that describe what the

business needs.

• User requirements:
– what the users need to do.

• Non-functional requirements:
– characteristics the system should have

• System requirements:
– how the system should be built

• Functional requirements:
– what the software should do.

• Business requirements:
– requirements will be created that describe what the

business needs.

• User requirements:
– what the users need to do.

• Non-functional requirements:
– characteristics the system should have

• System requirements:
– how the system should be built

Software Requirements

• Statements of services the system should provide,
how the system should react to particular inputs and
how the system should behave in particular situations

• Functional requirements May state what the system
should not do

• Broadly software requirements should be categorized
in two categories:

1. Functional Requirements

2. Non-Functional Requirements

• Statements of services the system should provide,
how the system should react to particular inputs and
how the system should behave in particular situations

• Functional requirements May state what the system
should not do

• Broadly software requirements should be categorized
in two categories:

1. Functional Requirements

2. Non-Functional Requirements

Software Requirements Characteristics
• Gathering software requirements is the foundation of the entire software

development project. Hence they must be clear, correct, and well-defined.
A complete Software Requirement Specifications must be:

– Clear
– Correct
– Consistent
– Coherent
– Comprehensible
– Modifiable
– Verifiable
– Prioritized
– Unambiguous
– Traceable
– Credible source

• Gathering software requirements is the foundation of the entire software
development project. Hence they must be clear, correct, and well-defined.
A complete Software Requirement Specifications must be:

– Clear
– Correct
– Consistent
– Coherent
– Comprehensible
– Modifiable
– Verifiable
– Prioritized
– Unambiguous
– Traceable
– Credible source

Functional Requirements
• Requirements, which are related to functional aspect of software fall

into this category.
• They define functions and functionality within and from the

software system.

EXAMPLES –
• The software automatically validates customers against the ABC

Con- tact Management System
• Example
• Only Managerial level employees have the right to view revenue

data The software system should be integrated with banking API
User should be able to mail any report to management Software is
developed keeping downward compatibility intact

• Requirements, which are related to functional aspect of software fall
into this category.

• They define functions and functionality within and from the
software system.

EXAMPLES –
• The software automatically validates customers against the ABC

Con- tact Management System
• Example
• Only Managerial level employees have the right to view revenue

data The software system should be integrated with banking API
User should be able to mail any report to management Software is
developed keeping downward compatibility intact

Non-Functional Requirements
• They are implicit or expected characteristics of software, which

users make assumption of.
• A non-functional requirement defines the quality attribute of a

software system. They represent a set of standards used to judge
the specific operation of a system

• These define system properties and constraints e.g. reliability,
response time and storage requirements. Constraints are I/O device
capability, system representations, etc They are implicit or expected
characteristics of software, which users make assumption of

• May be more critical than functional requirements. If these are not
met, the system may be useless.

• Non-functional requirements may affect the overall architecture of
a system rather than the individual components

• A single non-functional requirement, such as a security
requirement, may generate a number of related functional
requirements that define system services that are required

• They are implicit or expected characteristics of software, which
users make assumption of.

• A non-functional requirement defines the quality attribute of a
software system. They represent a set of standards used to judge
the specific operation of a system

• These define system properties and constraints e.g. reliability,
response time and storage requirements. Constraints are I/O device
capability, system representations, etc They are implicit or expected
characteristics of software, which users make assumption of

• May be more critical than functional requirements. If these are not
met, the system may be useless.

• Non-functional requirements may affect the overall architecture of
a system rather than the individual components

• A single non-functional requirement, such as a security
requirement, may generate a number of related functional
requirements that define system services that are required

Non-functional classifications
• Product requirements:-Requirements which specify

that the delivered product must behave in a particular
way e.g. execution speed, reliability, etc

• Organizational requirements:-Requirements which
are a consequence of organisational policies and
procedures e.g. process standards used, implementation
requirements, etc

• External requirements:- Requirements which arise
from factors which are external to the system and its
development process e.g. interoperability requirements,
legislative requirements, etc

• Product requirements:-Requirements which specify
that the delivered product must behave in a particular
way e.g. execution speed, reliability, etc

• Organizational requirements:-Requirements which
are a consequence of organisational policies and
procedures e.g. process standards used, implementation
requirements, etc

• External requirements:- Requirements which arise
from factors which are external to the system and its
development process e.g. interoperability requirements,
legislative requirements, etc

Non-functional requirements include –

• Security
• Logging
• Storage
• Configuration
• Performance
• Cost
• Interoperability
• Flexibility
• Disaster recovery
• Accessibility

• Security
• Logging
• Storage
• Configuration
• Performance
• Cost
• Interoperability
• Flexibility
• Disaster recovery
• Accessibility

Metrics for specifying nonfunctional
requirements

Property Measure

Speed Processed transactions(second User)event response time
Screen refresh time

Size Mbytes Number of ROM chips

Ease of use Training time Number of help framesEase of use Training time Number of help frames

Reliability Mean time to failure. Probability of unavailability. Rate
of failure occurrence Availability

Robustness Time to restart after failure Percentage of events causing
failure. Probability of data corruption on failure

Portability Percentage of target dependent statements Number of
target systems

Requirements are categorized logically asRequirements are categorized logically as

• Must Have : Software cannot be said operational without
them.

• Should have : Enhancing the functionality of software.

• Could have : Software can still properly function with these
requirements.

• Wish list : These requirements do not map to any objectives
of software.

• While developing software, ‘Must have’ must be
implemented, ‘Should have’ is a matter of debate with
stakeholders and negation, whereas ‘Could have’ and
‘Wish list’ can be kept for software updates.

• Must Have : Software cannot be said operational without
them.

• Should have : Enhancing the functionality of software.

• Could have : Software can still properly function with these
requirements.

• Wish list : These requirements do not map to any objectives
of software.

• While developing software, ‘Must have’ must be
implemented, ‘Should have’ is a matter of debate with
stakeholders and negation, whereas ‘Could have’ and
‘Wish list’ can be kept for software updates.

User Interface requirements
• User Interface (UI) is an important part of any software or hardware

or hybrid system. A software is widely accepted if it is –
 easy to operate
 quick in response
 effectively handling operational errors
 providing simple yet consistent user interface

• User acceptance majorly depends upon how user can use the
software.

• UI is the only way for users to perceive the system.
• A well performing software system must also be equipped with

attractive, clear, consistent, and responsive user interface.
• Otherwise the functionalities of software system can not be used in

convenient way.
• A system is said to be good if it provides means to use it efficiently.

• User Interface (UI) is an important part of any software or hardware
or hybrid system. A software is widely accepted if it is –

 easy to operate
 quick in response
 effectively handling operational errors
 providing simple yet consistent user interface

• User acceptance majorly depends upon how user can use the
software.

• UI is the only way for users to perceive the system.
• A well performing software system must also be equipped with

attractive, clear, consistent, and responsive user interface.
• Otherwise the functionalities of software system can not be used in

convenient way.
• A system is said to be good if it provides means to use it efficiently.

User interface requirements are briefly mentioned
below

 Content presentation
 Easy Navigation
 Simple interface
 Responsive
 Consistent UI elements
 Feedback mechanism
 Default settings
 Purposeful layout
 Strategical use of color and texture.
 Provide help information
 User centric approach
 Group based view settings.

 Content presentation
 Easy Navigation
 Simple interface
 Responsive
 Consistent UI elements
 Feedback mechanism
 Default settings
 Purposeful layout
 Strategical use of color and texture.
 Provide help information
 User centric approach
 Group based view settings.

Software System Analyst

• System analyst in an IT organization is a person, who analyzes
the requirement of proposed system and ensures that
requirements are conceived and documented properly and
accurately.

• Role of an analyst starts during Software Analysis Phase of
SDLC.

• It is the responsibility of analyst to make sure that the
developed software meets the requirements of the client.

• System analyst in an IT organization is a person, who analyzes
the requirement of proposed system and ensures that
requirements are conceived and documented properly and
accurately.

• Role of an analyst starts during Software Analysis Phase of
SDLC.

• It is the responsibility of analyst to make sure that the
developed software meets the requirements of the client.

Needs analysisNeeds analysis

1) Business perspective: An outline of the current business
climate, structure of company and the emerging industry issues
that are driving the project.

2) Technical perspective: An outline of existing IT
systems/infrastructure of the company including computer
hardware specifications, numbers and locations, details on
browsers, operating systems, servers, security policies, networks,
bandwidth capacity and so on.

3) Human perspective: An outline of the motivation of staff to
use new IT systems. It may also cover such considerations as PC
literacy, industrial relations issues for staff, legalities and even
language issues for users.

1) Business perspective: An outline of the current business
climate, structure of company and the emerging industry issues
that are driving the project.

2) Technical perspective: An outline of existing IT
systems/infrastructure of the company including computer
hardware specifications, numbers and locations, details on
browsers, operating systems, servers, security policies, networks,
bandwidth capacity and so on.

3) Human perspective: An outline of the motivation of staff to
use new IT systems. It may also cover such considerations as PC
literacy, industrial relations issues for staff, legalities and even
language issues for users.

84

System Analysts have the following responsibilities

 Analyzing and understanding requirements of intended
software

 Understanding how the project will contribute to the
organizational objectives

 Identify sources of requirement

 Validation of requirement

 Develop and implement requirement management plan

 Documentation of business, technical, process, and product
requirements

 Coordination with clients to prioritize requirements and
remove ambiguity

 Finalizing acceptance criteria with client and other
stakeholders

 Analyzing and understanding requirements of intended
software

 Understanding how the project will contribute to the
organizational objectives

 Identify sources of requirement

 Validation of requirement

 Develop and implement requirement management plan

 Documentation of business, technical, process, and product
requirements

 Coordination with clients to prioritize requirements and
remove ambiguity

 Finalizing acceptance criteria with client and other
stakeholders

Users of a requirementsUsers of a requirements
documentdocument

RequirementsRequirements specificationspecification

• The process of writing the user and system
requirements in a requirements document

• User requirements have to be understandable
by end-users and customers who do not have a
technical background System requirements are
more detailed requirements and may include
more technical information

• The requirements may be part of a contract for
the system development

• The process of writing the user and system
requirements in a requirements document

• User requirements have to be understandable
by end-users and customers who do not have a
technical background System requirements are
more detailed requirements and may include
more technical information

• The requirements may be part of a contract for
the system development

Ways of writing a system requirementsWays of writing a system requirements
specificationspecification

Notation Description

Natural lan-
Gauge

The requirements are written using numbered sentences in
natural language. Each sentence should express one require- ment

Structured
natural
language

The requirements are written in natural language on a stan-
dard form or template. Each field provides information about an aspect of the
requirement

Structured
natural
language

The requirements are written in natural language on a stan-
dard form or template. Each field provides information about an aspect of the
requirement

Design de-
\scription
languages

This approach uses a language like a programming language,
but with more abstract features to specify the requirements by defining an
operational model of the system. This ap- proach is now rarely used although it
can be useful for in- terface specifications

Graphical
Notations

Graphical models, supplemented by text annotations, are
used to define the functional requirements for the system; UML use case and
sequence diagrams are used

Requirements and designRequirements and design
• In principle, requirements should state what the system

should do and the design should describe how it does
this

• In practice, requirements and design are inseparable
• A system architecture may be designed to structure the

requirements The system may inter-operate with other
systems that generate design requirements

• The use of a specific architecture to satisfy non-
functional requirements may be a domain requirement

• This may be the consequence of a regulatory
requirement

• In principle, requirements should state what the system
should do and the design should describe how it does
this

• In practice, requirements and design are inseparable
• A system architecture may be designed to structure the

requirements The system may inter-operate with other
systems that generate design requirements

• The use of a specific architecture to satisfy non-
functional requirements may be a domain requirement

• This may be the consequence of a regulatory
requirement

Guidelines for writing requirements

• Invent a standard format and use it for all
requirements

• Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements

• Use text highlighting to identify key parts of the
requirement

• Avoid the use of computer jargon
• Include an explanation (rationale) of why a

requirement is necessary

• Invent a standard format and use it for all
requirements

• Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements

• Use text highlighting to identify key parts of the
requirement

• Avoid the use of computer jargon
• Include an explanation (rationale) of why a

requirement is necessary

Natural language specification

• Requirements are written as natural language
sentences supplemented by diagrams and
tables

• Used for writing requirements because it is
expressive, intuitive and universal. This means
that the requirements can be understood by
users and customers

• Requirements are written as natural language
sentences supplemented by diagrams and
tables

• Used for writing requirements because it is
expressive, intuitive and universal. This means
that the requirements can be understood by
users and customers

Problems with natural language

• Lack of clarity:- Precision is difficult without
making the document difficult to read

• Requirements confusion:- Functional and
non-functional requirements tend to be mixed-
up

• Requirements amalgamation:- Several
different requirements may be expressed
together

• Lack of clarity:- Precision is difficult without
making the document difficult to read

• Requirements confusion:- Functional and
non-functional requirements tend to be mixed-
up

• Requirements amalgamation:- Several
different requirements may be expressed
together

Structured specifications

• An approach to writing requirements where the
freedom of the requirements writer is limited
and requirements are written in a standard
way

• This works well for some types of
requirements e.g. requirements for embedded
control system but is sometimes too rigid for
writing business system requirements

• An approach to writing requirements where the
freedom of the requirements writer is limited
and requirements are written in a standard
way

• This works well for some types of
requirements e.g. requirements for embedded
control system but is sometimes too rigid for
writing business system requirements

Requirements reviews

• Regular reviews should be held while the
requirements definition is being formulated.

• Both client and contractor staff should be
involved in reviews. Reviews may be formal
(with completed documents) or informal.

• Good communications between developers,
customers and users can resolve problems at
an early stage.

• Regular reviews should be held while the
requirements definition is being formulated.

• Both client and contractor staff should be
involved in reviews. Reviews may be formal
(with completed documents) or informal.

• Good communications between developers,
customers and users can resolve problems at
an early stage.

Review checks

• Verifiability: Is the requirement realistically
testable?

• Comprehensibility: Is the requirement
properly understood?

• Traceability: Is the origin of the requirement
clearly stated?

• Adaptability: Can the requirement be changed
without a large impact on other requirements?

• Verifiability: Is the requirement realistically
testable?

• Comprehensibility: Is the requirement
properly understood?

• Traceability: Is the origin of the requirement
clearly stated?

• Adaptability: Can the requirement be changed
without a large impact on other requirements?

Requirements checking
• Validity. Does the system provide the functions

which best support the customer’s needs?
• Consistency. Are there any requirements

conflicts?
• Completeness. Are all functions required by the

customer included?
• Realism. Can the requirements be implemented

given available budget and technology
• Verifiability. Can the requirements be checked?

• Validity. Does the system provide the functions
which best support the customer’s needs?

• Consistency. Are there any requirements
conflicts?

• Completeness. Are all functions required by the
customer included?

• Realism. Can the requirements be implemented
given available budget and technology

• Verifiability. Can the requirements be checked?

Requirements management
• Requirements management is the process of managing

changing requirements during the requirements
engineering process and system development.

• New requirements emerge as a system is being
developed and after it has gone into use.

• You need to keep track of individual requirements and
maintain links between dependent requirements so that
you can assess the impact of requirements changes. You
need to establish a formal process for making change
proposals and linking these to system requirements

• Requirements management is the process of managing
changing requirements during the requirements
engineering process and system development.

• New requirements emerge as a system is being
developed and after it has gone into use.

• You need to keep track of individual requirements and
maintain links between dependent requirements so that
you can assess the impact of requirements changes. You
need to establish a formal process for making change
proposals and linking these to system requirements

Changing requirements

• The business and technical environment of the
system always changes after installation

• The people who pay for a system and the users of
that system are rarely the same people

• System customers impose requirements because
of organizational and budgetary constraints.
These may conflict with end-user requirements
and, after delivery, new features may have to be
added for user support if the system is to meet its
goals.

• The business and technical environment of the
system always changes after installation

• The people who pay for a system and the users of
that system are rarely the same people

• System customers impose requirements because
of organizational and budgetary constraints.
These may conflict with end-user requirements
and, after delivery, new features may have to be
added for user support if the system is to meet its
goals.

Changing requirements

• Large systems usually have a diverse user
community, with many users having different
requirements and priorities that may be
conflicting or contradictory

• The final system requirements are inevitably a
compromise between them and, with
experience, it is often discovered that the
balance of support given to different users has
to be changed

• Large systems usually have a diverse user
community, with many users having different
requirements and priorities that may be
conflicting or contradictory

• The final system requirements are inevitably a
compromise between them and, with
experience, it is often discovered that the
balance of support given to different users has
to be changed

Requirements management planning

• Establishes the level of requirements management detail that is
required

• Requirements management decisions:
• Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced with other requirements.
• A change management process This is the set of activities that

assess the impact and cost of changes.
• Traceability policies These policies define the relationships between

each requirement and between the requirements and the system
design that should be recorded.

• Tool support Tools that may be used range from specialist
requirements management systems to spreadsheets and simple
database systems

• Establishes the level of requirements management detail that is
required

• Requirements management decisions:
• Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced with other requirements.
• A change management process This is the set of activities that

assess the impact and cost of changes.
• Traceability policies These policies define the relationships between

each requirement and between the requirements and the system
design that should be recorded.

• Tool support Tools that may be used range from specialist
requirements management systems to spreadsheets and simple
database systems

Requirements management planning

• During the requirements engineering process, you have to
plan:
– Requirements identification

• How requirements are individually identified;

– A change management process
• The process followed when analysing a requirements change;

– Traceability policies
• The amount of information about requirements relationships that is

maintained;

– CASE tool support
• The tool support required to help manage requirements change;

• During the requirements engineering process, you have to
plan:
– Requirements identification

• How requirements are individually identified;

– A change management process
• The process followed when analysing a requirements change;

– Traceability policies
• The amount of information about requirements relationships that is

maintained;

– CASE tool support
• The tool support required to help manage requirements change;

Traceability
• Traceability is concerned with the relationships between

requirements, their sources and the system design

• Source traceability
– Links from requirements to stakeholders who proposed these

requirements;

• Requirements traceability
– Links between dependent requirements;

• Design traceability
– Links from the requirements to the design;

• Traceability is concerned with the relationships between
requirements, their sources and the system design

• Source traceability
– Links from requirements to stakeholders who proposed these

requirements;

• Requirements traceability
– Links between dependent requirements;

• Design traceability
– Links from the requirements to the design;

A traceability matrix

Req.
id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R
1.2 D D D
1.3 R R
2.1 R D D
2.2 D
2.3 R D
3.1 R
3.2 R

Req.
id

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 D R
1.2 D D D
1.3 R R
2.1 R D D
2.2 D
2.3 R D
3.1 R
3.2 R

CASE tool support
• Requirements storage

– Requirements should be managed in a secure, managed data store.

• Change management
– The process of change management is a workflow process whose

stages can be defined and information flow between these stages
partially automated.

• Traceability management
– Automated retrieval of the links between requirements.

• Requirements storage
– Requirements should be managed in a secure, managed data store.

• Change management
– The process of change management is a workflow process whose

stages can be defined and information flow between these stages
partially automated.

• Traceability management
– Automated retrieval of the links between requirements.

Requirements change management

• Should apply to all proposed changes to the
requirements.

• Principal stages
– Problem analysis. Discuss requirements problem

and propose change;
– Change analysis and costing. Assess effects of

change on other requirements;
– Change implementation. Modify requirements

document and other documents to reflect change.

• Should apply to all proposed changes to the
requirements.

• Principal stages
– Problem analysis. Discuss requirements problem

and propose change;
– Change analysis and costing. Assess effects of

change on other requirements;
– Change implementation. Modify requirements

document and other documents to reflect change.

Requirements change management

• Deciding if a requirements change should be accepted
• Problem analysis and change specification: During this stage, the

problem or the change proposal is analyzed to check that it is valid.
This analysis is fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to
withdraw the request.

• Change analysis and costing: The effect of the proposed change is
assessed using traceability information and general knowledge of
the system requirements. Once this analysis is completed, a
decision is made whether or not to proceed with the requirements
change. Change implementation:

• The requirements document and, where necessary, the system design
and implementation, are modified. Ideally, the document should be
organized so that changes can be easily implemented

• Deciding if a requirements change should be accepted
• Problem analysis and change specification: During this stage, the

problem or the change proposal is analyzed to check that it is valid.
This analysis is fed back to the change requestor who may respond
with a more specific requirements change proposal, or decide to
withdraw the request.

• Change analysis and costing: The effect of the proposed change is
assessed using traceability information and general knowledge of
the system requirements. Once this analysis is completed, a
decision is made whether or not to proceed with the requirements
change. Change implementation:

• The requirements document and, where necessary, the system design
and implementation, are modified. Ideally, the document should be
organized so that changes can be easily implemented

Requirements change management

Key points
• The requirements engineering process includes

a feasibility study, requirements elicitation and
analysis, requirements specification and
requirements management.

• Requirements elicitation and analysis is
iterative involving domain understanding,
requirements collection, classification,
structuring, prioritisation and validation.

• Systems have multiple stakeholders with
different requirements.

• The requirements engineering process includes
a feasibility study, requirements elicitation and
analysis, requirements specification and
requirements management.

• Requirements elicitation and analysis is
iterative involving domain understanding,
requirements collection, classification,
structuring, prioritisation and validation.

• Systems have multiple stakeholders with
different requirements.

Key points
• Social and organisation factors influence

system requirements.
• Requirements validation is concerned with

checks for validity, consistency, completeness,
realism and verifiability.

• Business changes inevitably lead to changing
requirements.

• Requirements management includes planning
and change management.

• Social and organisation factors influence
system requirements.

• Requirements validation is concerned with
checks for validity, consistency, completeness,
realism and verifiability.

• Business changes inevitably lead to changing
requirements.

• Requirements management includes planning
and change management.

Software Metrics and Measures

• Software Measures can be understood as a process of
quantifying and symbolizing various attributes and aspects
of software.

• Software Metrics provide measures for various aspects of
software process and software product.

• Software measures are fundamental requirements of
software engineering.

• They not only help to control the software development
process but also aid to keep the quality of ultimate product
excellent.

• According to Tom DeMarco, a (Software Engineer), “You
cannot control what you cannot measure.” By his saying, it
is very clear how important software measures are.

• Software Measures can be understood as a process of
quantifying and symbolizing various attributes and aspects
of software.

• Software Metrics provide measures for various aspects of
software process and software product.

• Software measures are fundamental requirements of
software engineering.

• They not only help to control the software development
process but also aid to keep the quality of ultimate product
excellent.

• According to Tom DeMarco, a (Software Engineer), “You
cannot control what you cannot measure.” By his saying, it
is very clear how important software measures are.

some software metricssome software metrics
• Size Metrics - Lines of Code (LOC) (), mostly

calculated in thousands of
• delivered source code lines, denoted as KLOC.
• Function Point Count is measure of the functionality

provided by the software.
• Function Point count defines the size of functional

aspect of the software.
• Complexity Metrics - McCabe’s Cyclomatic

complexity quantifies the upper bound of the number of
independent paths in a program, which is perceived as
complexity of the program or its modules. It is
represented in terms of graph theory concepts by using
control flow graph

• Size Metrics - Lines of Code (LOC) (), mostly
calculated in thousands of

• delivered source code lines, denoted as KLOC.
• Function Point Count is measure of the functionality

provided by the software.
• Function Point count defines the size of functional

aspect of the software.
• Complexity Metrics - McCabe’s Cyclomatic

complexity quantifies the upper bound of the number of
independent paths in a program, which is perceived as
complexity of the program or its modules. It is
represented in terms of graph theory concepts by using
control flow graph

• Quality Metrics - Defects, their types and causes,
consequence, intensity of severity and their implications
define the quality of the product.

 The number of defects found in development process and
number of defects reported by the client after the product is
installed or delivered at client end, define quality Of the
product.

• Process Metrics - In various phases of SDLC, the methods
and tools used, the company standards and the performance
of development are software process metrics.

• Resource Metrics - Effort, time, and various resources
used, represents metrics for resource measurement.

• Quality Metrics - Defects, their types and causes,
consequence, intensity of severity and their implications
define the quality of the product.

 The number of defects found in development process and
number of defects reported by the client after the product is
installed or delivered at client end, define quality Of the
product.

• Process Metrics - In various phases of SDLC, the methods
and tools used, the company standards and the performance
of development are software process metrics.

• Resource Metrics - Effort, time, and various resources
used, represents metrics for resource measurement.

Summery
Requirements engineering is the process of developing a

software specification
• Requirements engineering process:
1. Feasibility study: Is it technically and financially feasible

to build the system?
2. Requirements elicitation and analysis: what do the

system stakeholders require or expect from the system?
3. Requirements specification: defining the requirements in

detail
4. Requirements validation

Requirements engineering is the process of developing a
software specification

• Requirements engineering process:
1. Feasibility study: Is it technically and financially feasible

to build the system?
2. Requirements elicitation and analysis: what do the

system stakeholders require or expect from the system?
3. Requirements specification: defining the requirements in

detail
4. Requirements validation

Software Project Management

Chapter 3

